

DNS Without Borders: Uncovering Regional Hubs and Dependencies in K-Root Traffic

Jim Cowie, Qasim Lone, Rene Wilhelm | CAPIF4 Almaty | 24 September 2025

DNS Root Servers

The DNS Root Servers Form a Global Community

13 root servers (A-M) are coordinated by 12 organisations

K-root (one of the 13, operated by RIPE NCC) is effectively **its own global community**

- **140 instances** in cities worldwide
- Anycast routes to 193.0.14.0/23
 (IPv4) or 2001:7fd::/32 (IPv6)
- <u>k.root-servers.net</u>
 - 193.0.14.129
 - o 2001:7fd::1

Jim Cowie | CAPIF4 Almaty | 25 September 2025

Central Asia's K-Root Instances Are Part of this Community

Jim Cowie | CAPIF4 Almaty | 25 September 2025

Seven Central Asian K-Root Instances (Sep 2025)

Kazakhstan

- Semey (KZNIC)
- Pavlodar (Kazakhtelecom)
- Astana (State Technical Service, new in April 2025)

Kyrgyzstan

- Bishkek-1 (KG-IX)
- Bishkek-2 (NUR Telecom)

Uzbekistan

Tashkent (UZINFOCOM)

Tajikistan

Dushanbe (Eastera Ltd)

Jim Cowie | CAPIF4 Almaty | 25 September 2025

Where Do Central Asian DNS Resolvers Send Most K-Root Queries?

What Percentage of K-Root Queries Reach Each Country?

- Kyrgyzstan,
 Kazakhstan,
 Tajikistan, and Iran
 now handle >98% of
 K-root queries from
 their domestic resolver
 populations
- Uzbekistan stays regional, sending 23.3% of queries to neighbor Kazakhstan
- Turkmenistan has no K-root instance, and exports queries to Kazakhstan, Germany

Jim Cowie | CAPIF4 Almaty | 25 September 2025

Kazakhstan's Resolver Population: Top Mappings

K-root instance	City	% of queries	% of resolver IPs
ns1.pwq-kz.k.ripe.net	Pavlodar, KZ	85.9%	56.4%
ns1.plx-kz.k.ripe.net	Semey, KZ	12.0%	36.7%
ns1.ast-kz.k.ripe.net	Astana, KZ	1.8%	5.4%

Jim Cowie | CAPIF4 Almaty | 25 September 2025

Q

Uzbekistan's Resolver Population: Top Mappings

K-root instance	City	% of queries	% of resolver IPs
ns1.tas-uz.k.ripe.net	Tashkent, UZ	73.4%	33.8%
ns1.pwq-kz.k.ripe.net	Pavlodar, KZ	23.3%	14.6%
ns1.abo-am.k.ripe.net	Abovyan, AM	3.2%	47.3%

Different providers learn different anycast routes —

Jim Cowie | CAPIF4 Almaty | 25 September 2025

ATLAS Probes Reveal Diversity of Received Anycast Routes

Many providers learn routes to Armenia and Kazakhstan via Uzbektelecom's AS28910

...But most *K-root queries* will still remain in Tashkent through Uzbektelecom's AS8193

Source: RIPE Atlas traceroutes collected 31 July 2025

Jim Cowie | CAPIF4 Almaty | 25 September 2025

Latencies Can Tell a More Complex Story

Median Daily Latencies to K-Root from Kazakhstan, 2025

This is <u>good</u>:
Kazakhstan's
ATLAS probes see
consistent low
latencies to mostly
domestic instances
of K-Root.

30ms: Bishkek/KG

20ms: Pavlodar, Semey/KZ

<10ms: Astana/KZ

Jim Cowie | CAPIF4 Almaty | 25 September 2025

Median Daily Latencies to K-Root from Uzbekistan, 2025

120-160ms: Pavlodar/KZ

Why is the UZ-KZ path to Pavlodar such high latency?

80ms: Abovyan/AM

70ms: Tallinn/EE

...Pavlodar used to be faster?

<10ms: Tashkent/UZ

Jim Cowie | CAPIF4 Almaty | 25 September 2025

Uzbekistan Often Reaches Kazakhstan K-Root via Russia.

- Uzbektelecom
 28910 passes
 along a route to
 K-root that it has
 learned via
 Kazakhtelecom's
 peering at Piter-IX
 in St. Petersburg,
 instead of a route
 to the local on-net
 instance preferred
 by Uzbektelecom
 8193.
- Traceroutes then go from Tashkent to Russia and then return to K-root in Pavlodar: a 100ms+ detour

Нор	IP Address	Reverse DNS	ASN	RTT 1	RTT 2	RTT 3
1	192.168.12.200	*		0.991 ms	0.792 ms	0.759 ms
2	94.158.57.0	*	43060	1.736 ms	1.347 ms	1.417 ms
3	*	*	*	*	*	*
4	195.69.189.178	*	28910	2.307 ms	1.533 ms	2.549 ms
5	195.69.189.39	*	28910	2.685 ms	2.022 ms	1.601 ms
6	185.1.153.206	kaztel.spb.piter-ix.net		55.65 ms	54.662 ms	55.31 ms
7	92.47.151.207	*	50482	123.652 ms	123.18 ms	123.21 ms
8	95.59.172.8	95.59.172.8.static.telecom.kz	9198	136.441 ms	136.765 ms	136.214 ms
9	82.200.243.207	*	9198	105.228 ms	103.218 ms	103.21 ms
10	92.47.150.89	*	50482	157.293 ms	157.625 ms	158.225 ms
11	193.0.14.129	k.root-servers.net	25152	123.568 ms	122.882 ms	122.758 ms

Jim Cowie | CAPIF4 Almaty | 25 September 2025

Who *Else* Relies on Central Asia's K Root Instances?

Many Other Countries Learn Routes to Kazakhstan's K-root!

Over 3 days of observation (31 July 2025 - 2 August 2025):

- **Russia** sent Kazakhstan more than 186M gueries
 - Kazakhstan is actually the #1 destination for Russian resolver traffic to K-root
- **China** sent Kazakhstan more than 94M queries
 - China resolves 99% of its own K-root traffic, but ranks KZ #2
- Pakistan sent Kazakhstan more than 5M queries
 - This is 26% of Pakistan's K-root traffic, also ranking KZ #2
- KZ's anycast instances attract at least 1000 queries per day from at least 30 countries
 - ...as far away as Hong Kong, Eritrea, Morocco, and the Philippines

Jim Cowie | CAPIF4 Almaty | 25 September 2025

You Can Examine the Catchment of Any K-root Server!

For example, here's the most recent set of probes that chose Pavlodar, KZ

https://atlas.ripe.net/maps/root-instanc es?root=01&question=103&protocol=0 ×tamp=1758240000&minRTT=0 &maxRTT=300&tags=kz-pwq

Jim Cowie | CAPIF4 Almaty | 25 September 2025

In Conclusion...

- Central Asia provides resiliency and diversity as an important part of the K-root global service network.
- Kazakhstan, in particular, resolves root queries for ISPs far beyond the region who learn about its anycast routes.
- Everyone in the region succeeds in sending the bulk of their domestic K-root query traffic to domestic K-root instances, with very low latency, with the exception of Turkmenistan (no instance yet!)
- It's still important to monitor latencies in order to detect suboptimal routing out-of-region, even between neighbors.

Jim Cowie | CAPIF4 Almaty | 25 September 2025

